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Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs
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A theoretical study of photonic bands for one-dimensighf) lattices embedded in planar waveguides with
strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on
the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by
perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi guided modes
are calculated for the case of self-standing membranes as well as for silicon-on-insulator structures. Photonic
band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the
gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of
quasiguided modes above the light line depend in a nontrivial way on structure parameters, mode index, and
wave vector. The results of this study may be useful for the design of integrated 1D photonic structures with
low radiative losses.
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I. INTRODUCTION (or materials, if the waveguide is asymmetriare truly

Photonic crystals embedded in planar dielectricduided and stationary, while those lying above the light line
waveguides, also known as photonic crystal slabs, are interid the first Brillouin zone are coupled to leaky waveguide
sively investigated as a promising route for the tailoring omed?s f"md are subject to intrinsic radlatlve Iosses_. These
photonic state§1—40. Indeed, propagation of light can be duasiguided modeare actually resonances in a region of
controlled in these systems by the dielectric discontinuity ofcONtinUoUs energy spectrum, and for this reason they are
the slab waveguide in the vertica) direction and by the ~more difficult to calculate than truly guided modes below the
photonic pattern in they plane. The geometry of a patterned light Img. Indeed, while the dlspersmn- of gmded modes can
waveguide gives considerable freedom in designing photoni?ne obtained by a plane-wave expansion with a supercell in

L L e vertical direction[7], the energies and especially the
;tructures(per_lodm or containing defeqtshat can .be real- losses of quasiguided[ r]nodes are |9nost commo?ﬂy stu):jied by
ized at near infrared or optical wavelength by IlthographyFDTD calculationg24]. Another important feature of photo-
and etching. . . N . nic crystal slabs is the blue shift of the eigenmodes due to

Most experimental investigations of photonic crystal

, ) ; X . vertical confinement in the planar waveguide. This effect,
slabs with ‘a two-dimensiona(2D) or one-dimensional \yhich is more pronounced for slabs with strong out-of-plane
(1D) periodic lattice concern in-plane transmiss[@w,6,16  refractive index contrast, implies that the energies of photo-

or Surface reﬂectance/transmittance measuremenﬁc bands and gaps depend on all parameters of the p|anar
[5,8,14,20,30,34,35with the purpose of determining the waveguide(layer thicknesses and refractive indizesd can
photonic gaps and the band dispersion. Structures containingiffer substantially from those of the reference 1D or 2D
defect states such as linear waveguides in 2D latfitB2G  system. Finally, the eigenmodes of photonic crystal slabs can
or microcavities in 1D systemf32,33,4Q are also being be put in one-to-one correspondence with those of the refer-
investigated. On the theoretical side, the study of photoni@nce system only when the frequency is sufficiently low for
crystal slabs has been undertaken with plane-wave expansidine waveguide to be monomode. The cutoff frequency of
[3,7,11,28,3], scattering-matrix method§9,25,29, finite-  second- and higher-order modes also depends on slab param-
difference time-domaifFDTD) calculations[15,22,27,28 eters and on the photonic lattice.
modal methods[12,17-19, and perturbative approaches In this work we present a systematic study of photonic
[10,23,39. Recently, a finite-basis expansion method hashands, gap maps, and diffraction losses for 1D photonic crys-
been introduced36—-38. Most of these papers concern 2D tal slabs, that is, 1D photonic lattices like those of a distrib-
structures, either periodic or with linear defects. The theoretuted Bragg reflectofsee Fig. 1a) for the 1D reference sys-
ical study of 1D structures is restricted to a few papers andem]. These are defined in two types of waveguides with
mostly focused onto the optical response in both in-planestrong refractive index contrast: the self-standing membrane
[17,19 and out-of-plang29,34,35,40,3Pconfigurations. or air bridge [Fig. 1(b)] and the asymmetric photonic crystal
Electromagnetic eigenmodes in photonic crystRIC)  slab in which only the core layer is patterngdg. 1(c)]. The
slabs with a periodic pattern have notable differences aktter structure is typically realized with the silicon-on-
compared to the ideal reference systdires, not waveguide insulator(SOI) system but may also be realized with GaAs
embeddey] which are well known from the literature for the on an oxide layer. We assume the following values of the
cases of both 141,42 and 2D[42] periodicities. A most  dielectric constantsege=12 for the high-index core layer
important issue is thdight-line problem only photonic (as appropriate to Si or GaAs below the band)gap,=1,
modes which lie below the light line of the cladding material and ¢,,;4.=2.1 (as appropriate for Sior other oxides The
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FIG. 2. Ideal multilayer(a) Photonic bands fof,,=0.3; TE and
TM modes are exactly degeneratie) Gap map, i.e., band edges as
a function of air fraction; the value of,;, corresponding to the
calculation given ina) is indicated by an arrow.

z

resonances in reflection or transmission, which may be used
for polarization-dependent filteffgl4] or for enhanced non-
Cair linear optical effect447,5. Most of the research concen-

z / trated on systems with a weak dielectric modulation, e.g.,
.'y 1d surface relief gratings for filtering and distributed feedback
[41,46, waveguides with a weak refractive index contrast

X 5 Edier within the core region45,48,5Q, and/or which are modeled

by a single Fourier component of the dielectric function

[44,51-53,58 For an extensive list of previous literature
along these lines and of the different kinds of theoretical

(c) Asymmetric waveguide

oxide

FIG. 1. Photonic structures studied in this wo¢&) Ideal one-
dimensional photonic crystal, with perica and air fractionf;,

methods used we refer to the book by Loewen and Popov
[49]. In all these cases, which can be treated at least qualita-

=l,/a. (b) Photonic crystal slab consisting of a self-standing, pat'tively by coupled-mode theory, the dispersion of the wave-

terned dielectric coréair bridge or membrangof thicknessd sur-

guide mode is only weakly modified by the dielectric modu-

rounded by air(c) Photonic crystal slab, with the pattern defined in |4 ; _ P
a high-ipdex d.ielectr.ic core of thicknedssandwiched between air :32829%?3 epg?;ct)i?]lg Zztirrllj?:tlgj?gserlrv?tﬁss?:gn\éerr)(/aliran(i:i}es?r? (;: g:(c
and an insulating oxide substrate. Throughout this work we assuml%odulation in the plane leading to an appreciable photonic
€aiel =12, €oge™ 2.1, andeg=1. gap have been studied in Ref&4,55 for the case of TE
polarization, and in Ref§57,59 for both TE and TM polar-
izations. In these strongly modulated cases a rigorous
0coupled—wave analysigalso called the Fourier modal
ethod is necessary and has been used. We point out that

periodic patterning is taken along the direction and
throughout this paper we assurkg=0. The gap maps are
calculated as a function of air fraction in the core layer an

for different values of the core thickness, thereby exploring . o
wide range of parameters of experimental interest. The Ole_he focus of the present work is quite different from all these

pendence of the radiation losses on frequency, poIarizatior{i?él"f:.pers'fIn particular f(()jrlwhat conce;ns tthe syfs';ematlc calcu(-j
and air fraction is also calculated and discussed. fIOI"I o gapt me:ps an OSS?S as a function ot frequency an
The photonic bands and gap maps of a distributed Bra98 various structuré parameters.

reflector are obviously well known and are exemplified in This work i; organized as foI.Iows. In Sec. Il we give. a
Fig. 2 [43]. Notice that the photonic bands of Fig(ap short description of the theoretical method for calculating

(which refer to an air fractiorf,,=0.3 as well as the gap photonic bands and intrinsic losses in a waveguide. In Sec.

; Il we discuss a few examples of photonic mode dispersion,
map of Fig. Zb) are degenerate for transverse electiiE) . . .
and transverse magnetitM) polarizations with respect to both for symmetric and asymmetric 1D photonic crystal

the plane of incidence: this degeneracy is lifted in a Wavef'labs' Section IV contains detailed results for 1D gap maps

guide because the confinement-induced shift is poIarizatioH1 a membrane or in an asymmetric waveguide for different

dependent, as was already shown experimenfaly. One values of the core thickness. In Sec. V we present results for
| ) intrinsic losses of quasiguided modes. In Sec. VI we give a

of the goals of the present paper is to establish whether{f| .
complete band gap for both polarizations can occur in ew closing remarks.
waveguide-embedded 1D photonic structure.

Related concepts have been studied in the context of di-
electric waveguide gratings, also called resonant grating fil-
ters[41,44-59. These kinds of diffraction gratings may sup-  The approach adopted here, which was already introduced
port guided and leaky modes. The latter are resonanthjn Refs.[36,37, relies on a finite-basis expansion in order to
coupled to an external light beam and give rise to narrowrransform the second-order equation for the magnetic field in

Il. METHOD
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FIG. 3. Photonic bands for the membrane structure of Hilg). The dashed lines represent the dispersions of light in air and in the
average core laye(a) TE, and(d) TM dispersion curves, folded in the first Brillouin zone, for a uniform dielectric membrane ayjth
=8.7 and thicknesd/a=0.4; (b) TE and(c) TM photonic bands for the patterned structure witfp=0.3,d/a=0.4.

a linear eigenvalue problem. The basis consists of the guidecerified. The frequency position of the cutoff does depend
modes of an effective homogeneous waveguide, where then the choice ofey;, especially for large air fractions,
dielectric constant of each layer is defined by the spatiahowever a comparison with exact scattering matrix calcu-
average of the dielectric constait) over the photonic pat- lations[35,36] shows that the average dielectric constant
tern. The in-plane Bloch vectdk is obviously conserved defined by Eq.(1) gives very good agreement with the
modulo a reciprocal lattice vect@. The off-diagonal com- frequencies and cutoff positions obtained from the exact
ponentseg ¢+ Of the dielectric tensor give rise to band split- calculations. It should also be noted that the electromag-
tings and to a folding of the photonic modes in the firstnetic field close to mode cutoff is mostly extended in the
Brillouin zone. Some of the photonic modes may lie belowcladdings, where the dielectric constants are homogeneous
the cladding light line and be truly guided, however mostfor the air bridge and SOI structures studied in the present
(sometimes aJl of them fall above the light line in the first paper.
Brillouin zone. Coupling of these modes to leaky modes of The number of reciprocal lattice vectdgsis limited by a
the effective waveguide is taken into account by time-finite cutoff, like for usual plane-wave calculatiof&4], and
dependent perturbation theory, which leads to an expressidgn addition a restricted number of guided modes of the effec-
for the imaginary part of the mode frequency in terms of thetive waveguide is kept in the expansion. For the calculations
photonic density of states at fixed in-plane wave vectorshown in this work, a number of 31 plane waves is usually
[23,37,6Q. This procedure is formally analogous to Fermi's taken in the basis set and is sufficient for convergence with
golden rule in quantum mechanics. When the waveguide ibetter than a percent accuracy. The number of guided modes
asymmetriglike in the case of the SOI structyreare must  in the expansion is not found to be critical in the frequency
be taken to express the leaky modes in terms of outgoingange considered and is usually taken to $98. For the
states and to relate them to the respective state derféifies quasiguided modes, neglect of the second-order shift due to
The approximations made in the present approach are aoupling to leaky modes introduces an error of less than a
follows (for a fuller discussion see Ref86,37). The effec- few percent in the photonic frequencies; the error is largest
tive dielectric constant of the homogeneous waveguidefor larger air fractions. All these approximations are justified
which defines the basis of guided modes for the expansion, & posterioriby the close agreement of the calculated photo-
chosen to be nic frequencies with those obtained from reflectivity calcula-
tions [36] made with the exact scattering-matrix metHog
€eit = Tair€air + (1 = fair) €iel (1) Finally, calculating the radiative losses of quasiguided modes
by first-order perturbation theory is justified by the fact that

for both TE and TM polarizations. This choice is by N0 q jmaginary part of the frequency is much smaller than the
means unique, although it is the exact definition of the effec-

. ) . N real part, as shown by the results below.
tive dielectric constant for TE polarization and anyway when
the electric field is perpendicular to the direction of period-

ipity [62]. For TM-polarized modes_, Wh_ich_have electric- IIl. PHOTONIC BANDS
field components along andz, the situation is more com-
plex [63]. It is known from the literature that the The photonic bands of the strong confinement symmetric

component of the electric field is subject to an effective di-slab, corresponding to the system schematically shown in
electric constant that is obtained from the inverse averagingig. 1(b), are displayed in Figs.(B) and 3c) for a core
rule [62], therefore a different choice efs in the patterned thicknessd=0.4a and an air fractiorf,;=0.3. The bands are
region could be suggested for TM modes. Choiceggf plotted by using dimensionless frequeneg/(2wc)=a/\ as
differing from Eg. (1) do not lead to any appreciable a function of in-plane wave vectdga/ 7 in the first Bril-
change of the results above the mode cutoff, as we havieuin zone. The photonic dispersion curves of the patterned
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structure are compared to those of a uniform dielectric slab B o] = ;
suspended in aifFigs. 3a) and 3d)] with a spatially aver- E——tll =2 o=1

aged dielectric constant given by E@), which ise.4=8.7 in 06 | &2 . =1 el a=1 |
the present case. The guided modes of Figa) &nd 3d) = '

represent the basis set for the expansion method discussed in g
the preceding section. The dispersion for the average dielec- < 04 |
tric slab is presented in the reduced zone scheme, allowing §

for a direct comparison with the corresponding photonic
bands of the patterned waveguide. We have classified the 021
guided modes according to mirror symmetry with respect to

e
S a) TE

the plane of incidenc&z=xz (we useo,, to denote this o W ol L L

operation and with respect to they plane(oy, operation. 0 02 04 06 08 1 0 02 04 06 08 1

The modes whose electric-field component lies in ¥ye k.a/n k,afr

plane are referred to as TE, and are odd with respect to _ _ _ _
specular reflection through the plane of incidefieg,=-1); FIG. 4. Photonic bands for the patterned dielectric-on-insulator

structure of Fig. {c) with f,;,=0.3,d/a=0.4. The dashed lines are
eIhe light dispersions in the effective core and in the upper and lower
claddings;a labels the order of the guided mod@) TE, and(b)

SI'M modes.

the modes whose magnetic field lies in theplane are la-
beled as TM and are even with respect to mirror plan
xZ(oy,=+1) [22]. These modes can be classified further a
even (oy,=+1) or odd (o,,=-1) with respect to specular
reflection through thexy plane, thus giving four different , i i
types of guided eigenfunctions for the electromagnetic field.. " Fig- 4 we display the photonic bands for the asymmet-
We can separately compare Figagto Fig. 3b) and Fig. ¢ structure represented in Fig.cl. The dashed lines are the
3(c) to Fig. 3d). It is clearly seen that for both TE and TM dispersions of photons in air, substrate, and effective dielec-
modes the periodic patterning of the dielectric slab intro-I'C core._The parameters used in these calculationsiéae
duces band gaps around the degenerate points of the aver T fa"_o.'3' allowing for a _dlrect comparison with the
slab dispersion curvegk,=0 andk,=+/a), owing to the esults of Figs. @) and 3c). Owing to the asymmetry of the
off-diagonal components of the inverse dielectric tensor’ertical waveguides,, is no more a symmetry operation: the
There is one-to-one correspondence between average s/gpdes can only be classified as dd@, Fig. 4a)] or even
and 1D PC slab modes. The first-order modE& even and [TM, Fig. 4(b)] with respect to the plane of incidence. How-
TM odd) have no cutoff frequency, as is well known for a €€ We have indicated the approximate order of the wave-
symmetric waveguide. The second-order guided modes ha/ide mode by the index in Fig. 4 (this can be defined only
a finite cutoff frequency, which is degenerate for TE and TMWhen the modes are well separated in frequency, otherwise
modes. The second-order mode, represented by dotted lindgiXing and anticrossing effects ocguior an asymmetric
hasay,=~1 for TE polarization, while it has,,=+1 for TM s.ab there are no modgs startingest O [41]. By comparing
polarization. Figs. 3 and 4, we notice that the lowest TE mode of the
A second point should be remarked by comparing thedsymmetric 1D PC slab is in quantitative agreement with the
photonic bands of Figs.(B) and 3¢) to the bands of an ideal first-order TE mode of the PC membrane; instead, the TM
multilayer. The first photonic band gap appears between 0.1810d€s of the asymmetric slab are somewhat less confined
and 0.20 in the ideal 1D case, and between 0.22 and 0.28 f&pan those Of, the PC membrane. It is mport_ant tp strgss that
the lowest TE mode in the PC slab, due to the confinemerif'® M0des lying between the two-cladding light lifeside
effect along the verticalz) direction. The gap between the @nd air in this caseare evanescent in air, but leaky in the
first and the second bands opens between 0.37 and O_Egbstrat_e. These modes havg finite radiative losses, as we
when considering TM modes; these values are strongly qulQ”” seein _Seﬁ' V. We also_noltgeptcr:\atl nt;) compl_ete ban_dhgip
shifted with respect to both the multilayer and the TE modedS Presentin the asymmetric slab, at variance with the

of the PC slab. Thus the confinement effect manifests itsel([:orresponding symmetric structure. The results shown in Fig.

in the blue shift of the eigenfrequencies of the electromag-4 are conceptually similar to Brillouin diagrams calculated

netic field with respect to the ideal multilayer, and moreoverfor TE polarization in the case of an asymmetric \_Navegwde
rating structurg55]. We point out that the described fea-

in the removal of degeneracy between TE and TM modes? t bhotonic band struct ¢ tric 1D PC
the latter effect is due to the stronger confinement of TM urés or photonic band Structures for an asymmetric

- lab were experimentally verified by variable angle surface
compared to TE modes in the planar wavegujd#]. We S
also notice that all the band gaps, except for the first one, "éeflectance performed on SO structures for both TE and TM

in the region of guided resonances, and could be experimeﬁjc’des[?ﬂ'

tally tested by external reflectance measurements. The first
band gap, either TE even or TM odd, is instead in the region
of truly guided modes. A complete band gap common to both
polarizations can also be seen arowa (277c) ~ 0.4, where In this section we present a complete set of gap maps for
the second-order TE gap overlaps the first-order TM gap. Asvaveguide-embedded 1D photonic crystals. We consider a
we will see in the following section, this is rather a coinci- band gapas a frequency region where no photonic modes
dence for 1D PC slabs. exist, either truly guided or quasiguided above the light line.

IV. GAP MAPS
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- 0 01 02 03 04 05 06 07 An important feature that we can see from Fig. 5 is that
) for d/a=0.2, the TE gap map is qualitatively similar to the
ideal multilayer ongsee Fig. 2b)] with a blue shift arising
g 06 from the confinement effect. The band gaps for TM modes
(5 are shifted to much higher frequencies and some complete
= 047 band gaps start to appear onlysdi ~0.7. The gap map is
3 more complex fod/a=0.4, due to the appearance of higher-
0.2 ¢ order waveguide modes at low frequency. Nevertheless, for
a/A=<0.4 the slab is still monomode, and a large complete
0 band gap opens in a wide range of air fractigRiy. 5b)].
0.6 This complete gap comes from the overlap of the first TM
gap[at the Brillouin zone edge, see Figcy and the second
O 04k TE one[at the zone center, Fig(l3]. No complete band gap
(5 ’ has been found for other values dfa (calculations not
= showr). For d/a=0.8 the photonic band structure is quite
S 02} [ TE complex because the slab becomes multimode already at low
| ™ frequencies. The band gap in TM modes is still present
b) d/a=0.4 I Both arounda/\ ~ 0.4, but no complete band gap exists because
0 : : . of the presence of second-order TE modes. The conclusions

" from these results are the following@) the TE gap map in a
04 | waveguide resembles the ideal 1D one only below the cutoff
of second-order mode€ij) the TM gap map is very sensitive

g to the structure parameters, afiid) a complete gap for both
Q 02 polarizations is calculated to occur only for a core thickness
S VOF ] aroundd/a=0.4.
3 I TE
d/a=0.8 .Y
0 9 ' - Bmh. B. Asymmetric waveguide

0 01 02 03 04 05 06 07 In Fig. 6 we show the calculated gap maps of the asym-
air fraction 1 metric 1D PC slab of Fig. (t), for core thicknessesd/a
_ =0.2, 0.4, and 0.8. The gap maps of Fig. 6 show notable
FIG. 5. (Color onling Gap maps for the membrane structure of jiffarences as compared to those of the PC membrane.
Fig. 1(b), as a function of the air fractiofi;=I;/a. Solid lines One of the peculiarities of the asymmetric structure is the
represent the cutoff frequency of the second-order waveguide Modgisience of a finite cutoff frequency for the lowest-order TE
Core thicknesseg) d/a=0.2,(b) d/a=0.4, and(c) d/a=0.8. and TM modes. The cutoff frequency as a function of air
) fraction is plotted with dashed lines for TE modes and with
We present the gap maps for modes with TE or TM polaro|id lines for TM modes. The values for the cutoff frequen-
mirror symmetryo,,: this convention applies to symmetric fo|lowing from the expression for a uniform, asymmetric
as well as asymmetric vertical waveguide structures. For thg|gh. The formula i§41]
case of the asymmetric structure, for which the lowest-order

waveguide mode has a finite cutoff, only the frequency re- wea _ a 1 V€oxide — Eair
gion above the lowest-order cutoff is physically relevant. 27C 20 en — € m+ —arcta rF e |
V ~€e oxiae ' +e oxiae
A. Dielectric membrane (3)

In Fig. 5 we display the calculated gap maps for the aifynerer=1 for TE modesy = e/ €5, for TM modes, and
bridge structure of Fig. (b). We show the maps for three .~ is an integer.
d!ﬁ‘erent_slab thicknesses, nameatya=0.2, 0.4, an_d 0.8. We For d/a=0.2 the asymmetric 1D PC slab has only first-
display in t_)lacl_< the_true Complete_ band gap, i.e., the fregqer TE and TM modes in the whole frequency range
quency region in which no photonic modes resonances  shown. The TE band gaps are again qualitatively similar to
are allowed for any polarization. The gap maps are showp,ose of the ideal 1D multilayer, with a confinement effect
for air fraction varying from O to 0.7, which represent a \yhich is close to that of the membrane cdbeg. Xa)]; the
realistic range for practical realization. The solid lines in Fig.Tp gaps are instead shifted to much higher frequencies as
5 represent the _C“t(?ﬁ f_requency of the second-order WaV€sompared to the 1D multilayer. The first TE band gap is in a
guide mode, which is given by region below the cutoff of the first-order TM mode, thus it
w.a a may be considered as a complete band gapdFa=0.4 and
c* _ .
(2 0.8 a second-order TE cutoff appears at frequencies around
0.44 and 0.22, respectively: the TE gap map is similar to that
and is the same for both polarizations. of the 1D multilayer only below the second-order cut-off

2mc  2d \“”Eeff ~ Eair
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0 01 02 03 04 05 06 07 FIG. 7. (a) Photonic bands an¢b) imaginary part of frequency
air fraction f,; for a symmetric 1D PC membrané;) photonic bands andd)

imaginary part of frequency for an asymmetric 1D PC slab. Param-
FIG. 6. (Color onling Gap maps for the asymmetric PC slab eters ared/a=0.2, f,;=0.3. Solid (dashedl lines are TE(TM)
structure of Fig. {c). Dashed(solid) lines represent the cutoff fre- modes. The arrow ifd) denotes the cusp, which corresponds to the
quencies of the first- and second-order waveguide modes for TEecond TE band ixic) crossing the air light line.
(TM) polarization. Core thicknesséa) d/a=0.2,(b) d/a=0.4, and

(c) d/a=0.8. V. DIFFRACTION LOSSES

frequency. The TM gaps are always very different from those To complete our analysis of 1D PC slabs we have to ad-
of the ideal 1D case and also quite different from those of thelress also the imaginary part of frequency, which gives in-
PC membrane: TM modes are seen to be extremely sensitifermation about the radiative losses due to out-of-plane dif-
to the structure parametefsore thickness and cladding di- fraction. This is done by using time-dependent perturbation
electric constanjsAs it can be seen by comparing Figgbp  theory for the electromagnetic problem, as previously dis-
and gb), the complete band gap folfa=0.4 occurs for the cussed in Sec. Il. We display in Fig. 7 the results for param-
particular case of a 1D PC membrane but not in the asymetersd/a=0.2 andf,;,=0.3 for both a PC membrane and an
metric PC slab. Fod/a=0.8 a complete band gap resulting asymmetric PC slab. In Figs(& and 1b) the band diagram
from the overlap of the first TE and TM gaps appears aroun@nd the corresponding imaginary part of frequencies are
a/\~0.3 for f,;=0.5. shown for the symmetric 1D PC slab. In Figaythe wave-

As a general remark, the numerical results for photonigguide is monomode for both TE and TM polarizations. In
bands and gaps previously shown relate only to the real pafig. 7b) we show the dimensionless quantity
of the frequency and do not consider the effect of coupling tdm (w)a/(2wc), corresponding to each photonic band of Fig.
radiative waveguide modes. Thus the physical relevance of &a), as a function of mode frequency. The imaginary part is
photonic band dispersion is expected to decrease on increagenerally much smaller than the real part, indicating the va-
ing the frequency far from the light line. We also notice thatlidity of the perturbative treatment adopted. The losses go to
the concept of mode cutoff for resonant modes is not clearlgero when the mode crosses the light line in air and becomes
defined when radiative broadening is taken into account. Faruly guided. It is clear from the figure that the radiative
these reasons, the gap maps calculated here are expecteddsses generally increase on increasing the photonic band
be more useful in the low frequency region, in particular forindex, however the behavior of the losses within a given
the band gaps which open below the second-order cutoffhotonic band is nontrivial and has to be studied in each
lines shown in Figs. 5 and 6. specific case. The guided resonances at the Brillouin zone
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center present a quite interesting behavior. In fact, the second 10°
and the fourth TE bands have zero linewidthkgt O [their Membrane
frequencies arewa/(2wc)=0.45 and 0.81, respectivgly 107} 3:d TE band =]
while the third and the fifth bands have finite radiative
widths atk,=0 [wa/(27¢)=0.56 and 0.9 A similar behav-
ior holds also for TM modes. These numerical results could
be probed by variable angle surface reflectance experiments
made on 1D PC membranes: the imaginary part of the fre-
quency can be extracted from the linewidth of spectral struc-
tures in reflectance that correspond to photonic modes
[14,20. 1075 L s . , , ,
In Figs. 1c) and 7d) we show the results for an asym- 0 01 02 03 04 05 06
metric 1D PC slab with the same thickness and air fraction air fraction f,;,
[65]. The radiative losses shown in Figdy display quite the
same behavior as in the membrane case. They are about two FIG. 8. Imaginary part of photonic frequencies as a function of
times larger than the corresponding losses of Fib): Zhis is the air fraction for the PC membrane of thickne¥a=0.2; the
due to the asymmetry of the vertical waveguide, which im-three curves correspond to different wave vectoks=0, k
plies that a quasiguided mode above the light line is coupled 7/2a k=m/a)in t.he first Brillouin zone of the third TE photonic
to all radiative modes of the effective waveguide at the sam&and. The thr_ee points marked on the curves correspond to the three
frequency, without the parity selection rule which holds in-Markers of Fig. i), wheref,;;=0.3.
stead in the symmetric case. A similar behavior was found in
the calculation of spectral properties of deep 1D gratingspectral linewidth of quasiguided photonic modes can vary
[17]. Moreover, the higher-order modésither TE or TM by several orders of magnitude and it depends in a nontrivial
now have a finite Irfw) also atk,=0: this is due to the way on the structure parameters as well as on the angle of
additional diffraction channels for radiative losses which argncidence, mode index, and polarization.
present in the asymmetric waveguide. Moreover, we notice
that the modes whose frequencies lie between the light lines
of air and oxide claddings are not truly guided, i.e., they are
evanescent in air but leaky in the substrate. Thus, the cross- We have studied the photonic bands and the gap maps of
ing between a band and the light line in air does not causgne-dimensional photonic crystal slabs made of a high re-
the linewidth of the photonic resonance to go to zero; rathefractive index material sandwiched between low index clad-
Im(w) has a cuspmarked by an arrow in Fig.(@] when the  dings, thus providing strong confinement of electromagnetic
light line in air is crossed. Similar features can by recognizedvaves along the vertical direction. The method adopted
in Fig. 7(d) at higher frequencies: they arise whenever ayields the frequencies of photonic modes both below and
photonic mode crosses a cladding light line folded in the firsabove the light line, and therefore allows treating guided and
Brillouin zone. These notable features of (m are not a quasiguided modes on the same footing.
numerical artifact, but rather they correspond physically to Photonic modes in a 1D photonic crystal waveguide can
the opening or closing of diffraction channels for radiativebe put in one-to-one correspondence with those of the ideal
losses. 1D reference system only when the waveguide is mono-
We also found that the imaginary part of frequency in-mode. Under this condition, the TE gap maps are qualita-
creases on increasing the air fraction in the investigatedvely similar to the ideal 1D ones considering the blue shift
range, as shown in Fig. 8, where(@)a/(27c) is plotted for  in the waveguide. This confinement effect is considerably
the PC membrane of thicknedéa=0.2. A similar behavior more pronounced for TM-polarized than for TE-polarized
is found also for the asymmetric structuret shown herg  modes, thereby leading to a polarization splitting which de-
and an increase of the photonic mode linewidth with the aipends in a sensitive way on the structure parameters. As a
fraction was already stated experimentdit,35. The three  consequence, a complete band gap common to TE and TM
curves of Fig. 8 correspond to the evolution of the losses fopolarizations is generally not found in 1D photonic crystal
the third TE photonic band at three different points in theslabs, except for special values of the parameters.
first Brillouin zone. Wherf;,=0.3 the corresponding photo- The radiative losses of guided resonances due to out-of-
nic band has frequencies aroumd/(277¢c)=0.6 [see Fig. plane diffraction depend in a sensitive way on waveguide
7(a)], and the three points marked in Fig. 8 correspond tgparameters, mode index, and frequency. For some modes the
those marked in Fig. (B). Note that the losses vary in a imaginary part of the frequency vanishes at the Brillouin
logarithmic scale and become extremely small either towardgone center, thus even above the light line it is possible to
the homogeneous waveguide limit at low air fraction or closefind photonic modes with very low losses. In general, the
to the Brillouin zone edge. While the filling fraction depen- losses are predicted to be higher for silicon-on-insulator
dence of the losses is similar for all bands and polarizationsstructures as compared to photonic crystal membranes, due
the wave vector dependence changes from band to band, agdtthe asymmetry of the planar waveguide. All these results
appears from Figs.(B) and {d). It can be concluded that for are related to the presence of diffraction channels for radia-
the present waveguide-embedded 1D photonic structures, thise couplings.

Im(w) a/2nc

VI. CONCLUSIONS
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The quantitative results for the complex frequency dispertheoretical approach can be applied to PC slabs with various
sion of quasiguided modes may be experimentally tested bgD patterns.
performing reflectance or transmittance measurements with
light incident on the PC slab surface. Modes below the light
line can be probed in waveguide transmission experiments. ACKNOWLEDGMENTS
Moreover, the results of the present work may be useful for
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